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Pre-harvest food safety diagnostics for Salmonella serovars.
Part 2: Molecular diagnostics
Wondwossen Abebe Gebreyes, DVM, PhD, Diplomate ACVPM

Several molecular methods have in-
creasingly become the preferred tools
for diagnosis of foodborne patho-

gens, including Salmonella. These methods
have allowed tracking of foodborne patho-
gens at the population level by enhanced
detection and subtyping. Methods based
on genotyping tend to have a high dis-
criminatory power and offer rapid and sen-
sitive subtyping, complementing conven-
tional approaches that are based on
phenotype, for example, serotyping and
phage typing. Additional factors for con-
sideration in the choice of molecular meth-
ods include reproducibility, ease of inter-
pretation, and time and cost efficiency.

Not all molecular approaches are equally
suitable for all foodborne pathogens. Selec-
tion of an appropriate method depends on
the presence or absence of the specific gene
allele of interest, stability or hypervariability
of genomes in some pathogens, and the
objectives of the molecular analysis. For
example, genotypic methods, such as
pulsed-field gel electrophoresis (PFGE) in
association with serotyping, are often used
to discriminate Salmonella serovars in
foodborne outbreaks and epidemiological
studies.

Three major molecular approaches used for
the diagnosis and epidemiology of Salmo-
nella serovars will be discussed: amplification
of gene allele(s) by polymerase chain reac-
tion (PCR), including multiplex PCR and
real-time PCR; DNA-DNA hybridization
(Southern blot); and fingerprinting (geno-
typing), using methods based on restriction
fragments, amplification, or both.

PCR
The basic principle of PCR is amplification
(up to a million times) of the specific DNA

sequence of interest within a few hours.
The products of amplification (amplicons)
are separated by size using gel electrophore-
sis. A detailed demonstration of PCR tech-
niques can be found at http://www.

dnalc.org/shockwave/pcranwhole.html.1

Before PCR may be used for diagnostic
purposes, it is essential to have prior
knowledge of a unique DNA sequence in
the target (suspect) organism, which might
be specific to a genus, species, or strain. In
some cases, even if the same DNA se-
quence is present in two organisms, PCR
may be used to discriminate between them
on the basis of DNA fragment size.

Polymerase chain reaction has been used to
detect Salmonella serovars in samples from
different sources, such as poultry,2 swine,3

and cattle.4 The genes being detected are
usually virulence determinants, such as
sipB/sipC,5 himA,6 and fimA and tctC
genes.7

Pathogenic Salmonella serogroups may be
differentiated using PCR to identify
unique regions of the rfb gene cluster,
which encodes for O-antigen biosynthesis.
The gene rfbJ is unique to serogroup B,
which includes serovar Typhimurium, and
rfbS and rfbE are unique to serogroup D,
which includes serovar Typhi.8,9

A PCR method that can efficiently dis-
criminate between Salmonella serovars is
currently being developed, in which a
DNA-based assay identifies serovar-specific
antigens. First, the alleles encoding for
three phases of the flagellar (H) antigen,
fliC, fljB and flpA, are sequenced and char-
acterized. Unique DNA markers are then
identified, and these results are combined
with similar assays for O antigens to com-
plete the molecular diagnostic assay.10 An-

other recent report describes a PCR assay
that uses the 16S and 23S ribosomal spacer
region to discriminate between Salmonella
serovars.11

Multiplex PCR
Serovar Typhimurium has recently been
identified as the most common Salmonella
serovar isolated from humans and swine in
the United States.12,13 An important char-
acteristic of this serovar is the emergence of
multi-drug resistant phenotypes, which are
often characterized by phage typing. Phage
type DT104, one of the most common
multi-drug resistant and pandemically dis-
tributed phage types, is commonly resis-
tance- (R-) type ACSSuT, exhibiting resis-
tance to ampicillin, chloramphenicol,
streptomycin, sulfamethoxazole, and tetra-
cycline. Phage type DT193, also of public
health importance and often associated
with swine products,3,12 is commonly R-
type AKSSuT, exhibiting resistance to
ampicillin, kanamycin, streptomycin,
sulfamethoxazole, and tetracycline.

The resistance genes involved in the
pentaresistant DT104 and DT193 phage
types have been previously described.3,14

These phage types can be detected using a
multiplex PCR, which amplifies multiple
genes in a single reaction. As an example, a
multiplex PCR has been developed5 that
detects phage type DT104 by amplifying
two virulence determinant primers and one
or more of the antimicrobial resistance
genes described (Figure 1).

Real-time PCR
Real-time PCR is similar to conventional
PCR in its basic principle and method, but
measures accumulation of a fluorescent
probe.15 The signal increases in direct pro-
portion to the amount of PCR product in
the reaction, enabling detection while the
reaction is progressing. Two important ad-
vantages of real-time PCR are achievement
of shorter processing time and lower cost
by eliminating post-amplification gel
analysis and enabling quantitative analysis
of gene products. The latter is particularly
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useful in gene expression assays, where it is
necessary to amplify cDNA in order to
quantify it after it is produced from mRNA
in the reverse-transcriptase reaction. Other
advantages of real-time PCR are increased
throughput, reduced chances of carryover
contamination, and elimination of post-
PCR processing as a potential source of
error. Non-specific chemical agents that
intercalate with double-stranded DNA,
such as SYBR-green, are commonly used in
singleplex reactions of real-time PCR. The
real-time PCR principle has also been ex-
tended to multiplex reactions using se-
quence-specific probes, for example, the
Taqman probe system16 and hairpin-
shaped oligonucleotide probes called mo-
lecular beacons.6 As the molecular beacon
approach is highly discriminatory and
specific, it enables detection of as few as 2
colony forming units per PCR reaction.
This method is often used to detect single
nucleotide polymorphisms,17 for example,
the gyrA gene mutation of fluoroquinolone
resistance, that may produce adverse phe-
notypic manifestations.

DNA-DNA hybridization
(Southern blot)
Hybridization of nucleic acid is one of the
preferred approaches to confirm identification
of a nucleic acid sequence in an organism.
The blotting method suitable for identify-
ing DNA sequences in bacterial foodborne

pathogens is known as a Southern blot or
DNA-DNA hybridization. Genomic or
plasmid DNA from the organism is di-
gested using one or more restriction en-
zymes, and digestion fragments are sepa-
rated using agarose gel electrophoresis.
After single-stranded fragments are blotted
onto nitrocellulose or nylon paper, the
gene probe of interest (labeled with radio-
active or chemiluminescent digoxigenin) is
hybridized. The target DNA sequence can
be identified and its fragment size mea-

sured using an apparatus to detect radioac-
tivity or chemiluminescence. Several stud-
ies have identified specific gene alleles in
Salmonella. In an experiment to detect the
β-lactam resistance gene, blaTEM, and its
location in seven Salmonella isolates,
Southern blotting (DNA-DNA hybridiza-
tion) was performed on XbaI-digested
pulsed-field genomic DNA hybridized us-
ing a digoxigenin-labeled blaTEM gene
probe (Figure 2). The blot showed that the
blaTEM gene was located in different DNA
fragments, showing that the isolates carry-
ing the gene were not clonal; and that the
gene was present on a large fragment (290
kb) in one isolate, implying that it was lo-
cated on the chromosome.

DNA fingerprinting
(genotyping)
Fingerprinting, also referred to as
genotyping, identifies an organism or strain
on the basis of its nucleic acid content
(most commonly DNA). By definition, the
most sensitive and accurate way of
fingerprinting is DNA sequencing. How-
ever, approaches that indicate variation in
sequences are less costly and more rapid
than sequencing, and have been used effec-
tively. Genotyping methods are commonly
based on identification of restriction frag-
ments, for example, by PFGE; amplification
by PCR, for example, by amplified frag-
ment length polymorphism (AFLP) or re-
petitive sequence PCR (Rep-PCR); or
DNA sequence, for example, by multi-
locus sequence typing (MLST).

Figure 1: Multiplex polymerase chain reaction (PCR) identification of
Salmonella serovar Typhimurium phage type DT104 (resistance type ACSSuT)
based on characteristic antimicrobial resistance and virulence gene alleles. The
three alleles are A) cmlA/tetG (275 bp); B) sipB/C (250 bp) and C) blaPSE1 (150
bp). Lanes 1 to 5, isolates tested; Lane 6, positive control; Lane 7, negative
control;. Lane 8, molecular marker. (ACSSuT: resistance to ampicillin,
chloramphenicol, streptomycin, sulfamethoxazole, and tetracycline).
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Figure 2: Southern blot (DNA-DNA hybridization) of the digoxigenin-labeled β-
lactam resistance gene, blaTEM, among seven Salmonella isolates with β-lactam
resistance phenotype. Southern blotting was performed on XbaI-digested
pulsed-field genomic DNA. Lanes 1 to 5: serovar Typhimurium; Lanes 6 and 7,
variant Copenhagen.
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Restriction fragment-based
genotyping methods: PFGE
The basic principle of PFGE, which has
been used since 1984, is digestion of ge-
nomic DNA with rare cutter restriction
enzymes specific for the organism of inter-
est.18 For example, XbaI is the enzyme
most commonly used for Salmonella
serovars. After restriction enzymes digest
intact genomic DNA embedded in agarose,
digested fragments are separated in a
pulsed-field gel electrophoresis apparatus.
The most common system of electrophore-
sis is the contour-clamped homogenous
electric field system (CHEF: BioRad Labo-
ratories, Hercules, California). This
method has been applied to identification
of various pathogens and has been the stan-
dard genotyping technique adopted by the
Center for Disease Control and Prevention
(CDC) for subtyping seven foodborne
pathogens. The CDC central database, also
called Pulsenet,19 is an early warning sys-
tem to detect unique PFGE patterns in
isolates from cases of foodborne disease in
humans and from food commodities. De-
tailed information on this system can be
found at the Pulsenet website.19

The standard PFGE protocol has been pre-
viously described.20 Figure 3 shows dis-
tinctly different cluster PFGE patterns
within and between different R-types
(ACSSuT and AKSSuT) and phage types
(DT104 and DT193) of Salmonella isolates
from swine farms.

Figure 3:. Pulsed-field gel electrophoresis fingerprint and dendrogram of 14 Salmonella serovar Typhimurium isolates
collected from swine farms in North Carolina. Two predominant clusters, with less than 40% correlation, are shown,
composed of two predominant resistance- (R-) types, AmCmStSuTe (phage type DT104) and AmKmStSuTe (phage type
DT193). Although some degree of within-cluster variation is present, isolates were >70% correlated. (Am, ampicillin;Cm,
chloramphenicol; Km, kanamycin; St, streptomycin; Su, sulfamethoxazole; Te tetracycline)

PCR-based approaches: AFLP
Amplified fragment length polymorphism,
a recently developed alternative fingerprinting
method,21 is a PCR-based typing system
technically different from PFGE, with a
high-resolution approach and high
throughput capacity. Like other PCR-based
approaches, this method is sensitive to con-
tamination that may affect its reproducibility,
and subsequently its sensitivity and
specificity. In addition, this method re-
quires relatively more expensive equip-
ment, ie, a DNA sequencer, which is not
available in most research or field laborato-
ries. In preliminary studies, the discrimina-
tory power of this method was similar to
that of PFGE (Gebreyes, unpublished
data). Published studies have also reported
similar findings.22,23 The evidence in these
reports and the standard use of PFGE in
the national database (Pulsenet) make
PFGE the preferred choice for subtyping
foodborne pathogens, particularly Salmo-
nella. Figure 4 demonstrates the use of
AFLP in subtyping 48 Salmonella isolates
collected from swine in North Carolina.
Four clusters with 60% or less pair-wise
correlation coefficients are shown.

Other PCR-based methods, including Rep-
PCR, have also been demonstrated as valu-
able tools for subtyping foodborne Salmo-
nella from swine24 and other swine
pathogens, such as Hemophilus parasuis.25

However, the discriminatory power and

reproducibility of Rep-PCR is not well es-
tablished and its use has been limited.

Conclusion
The described molecular diagnostic and
subtyping methods have the potential to
play a pivotal role in identification of
foodborne pathogens at individual or
population levels. Although methods based
on singleplex PCR have been commonly
used in diagnostic laboratories for diagnosis
of clinical swine diseases, their use in iden-
tifying foodborne pathogens isolated from
swine is limited, as these pathogens occur
subclinically and their characterization is
usually based on phenotyping (for example
serotyping and phage typing of Salmo-
nella). In research settings, PCR assays (tra-
ditional and real-time) are being further
developed for rapid and accurate
identification of foodborne pathogens in
human foodborne disease outbreaks. Mo-
lecular methods in foodborne disease out-
break investigations are currently comple-
mented with phenotypic analysis, because
the genetic composition of foodborne
strains remains largely unknown. One mo-
lecular method, PFGE, has gained wide
acceptance for subtyping Salmonella iso-
lated from humans because of the develop-
ment of the Pulsenet database system. Pre-
viously, fingerprints of Salmonella isolated
from swine and humans have been found
to be identical and outbreak origin has
been traced back to swine.26 In addition,
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Figure 4: Amplified fragment length polymorphism fingerprinting and phylogenetic lineages of 48 Salmonella serovar
Typhimurium (var Copenhagen) phage type DT193 isolates. Four clusters, A to D, are shown. Cluster differentiation
threshold (dotted line) is shown at 60% correlation coefficient. (Am, ampicillin; Ce, cephalothin; Cm, chloramphenicol; Gm,
gentamicin; Km, kanamycin; St, streptomycin; Su, sulfamethoxazole; Te tetracycline) (N=nursery, F= finisher)

human and swine Salmonella isolates from
the same geographical location and with
identical phenotypes (based on serotyping
and antibiotyping) have also been distin-
guished (Gebreyes et al, unpublished data).
As multiple genetic clones may exist within
phenotypes, phenotyping is not sufficient
to indicate clonality of organisms among
various hosts. To fully understand the ex-
tent of strain sharing between different
hosts, a fingerprint database for swine Sal-
monella (and other foodborne pathogens)
must be developed and compared with the
fingerprints of human isolates.
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