Monitoring for *Mycoplasma hyopneumoniae* before and after a partial depopulation program using a typing scheme based on the polyserine repeat motif of p146

Pablo Tamiozzo, MSc, Dr; Paula María Alejandra Lucchesi, Dr; Arnaldo Ambrogi, MSc

Summary

Mycoplasma hyopneumoniae diversity was determined using a molecular typing method based on the polyserine repeat motif within the p146 gene. Three related Argentinian farms (A, B, and C) were investigated. To obtain a population free of enzootic pneumonia on Farm C, a partial depopulation program had been carried out first on Farm A and then on Farm B. Finally, Farm C was populated with early-weaned piglets from Farm B. To evaluate the success of the partial depopulation program, the farms were monitored for clinical signs and by serological testing, lung examination at slaughter, and nested polymerase chain reaction (nPCR). It was concluded that they were free of enzootic pneumonia, but *M hyopneumoniae* remained despite the eradication measures applied. An outbreak of enzootic pneumonia in Farm C triggered an investigation of *M hyopneumoniae* genetic diversity in these farms. For this purpose, all DNA samples obtained from PCR-positive nasal swabs were further characterized using another nPCR designed for *M hyopneumoniae* typing.

Several *M hyopneumoniae* types were identified in these farms, but one strain seemed to be present before and after the application of the partial depopulation program. Unambiguous discrimination of *M hyopneumoniae* would require analysis of other genomic regions.

Keywords: swine, *Mycoplasma hyo- pneumoniae*, typing, persistence, polymerase chain reaction.

Received: October 2, 2012

Accepted: March 2, 2013

Resumen - Monitoreo del *Mycoplasma hyo- pneumoniae* antes y después de un programa de despoblación parcial utilizando tipificación basado en el esquema de repetición de la poliserina p146

Se determinó la diversidad del *Mycoplasma hyopneumoniae* utilizando un método de tipificación molecular basado en el esquema de repetición de la poliserina dentro el gen p146. Se investigaron tres granjas argentinas relacionadas (A, B, y C). Para obtener una población libre de neumonía enzootica en la Granja C, se llevó a cabo un programa de despoblación parcial, primero en la Granja A y luego en la Granja B. Finalmente, se pobló la Granja C con lechones de destete de la Granja B. Para evaluar el éxito del programa de despoblación parcial, las granjas se monitorearon en busca de signos clínicos y por medio de pruebas serológicas, examen de pulmones en el matadero, y por medio de la prueba de reacción en cadena de la polimerasa anidada (nPCR). Se concluyó que estaban libres de neumonía enzootica, pero que el *M hyopneumoniae* permaneció a pesar de las medidas de erradicación aplicadas. Un brote de neumonía enzootica en la Granja C desencadenó una investigación de la diversidad genética del *M hyopneumoniae* en estas granjas. Para este propósito, todas las muestras de DNA obtenidas de hisopos nasales positivos fueron caracterizadas más a fondo utilizando otro nPCR designado para la tipificación del *M hyopneumoniae*. Se identificaron varios tipos de *M hyopneumoniae* en estas granjas, una cepa pareció estar presente antes y después de la aplicación del programa de despoblación parcial. La discriminación definitiva del *M hyopneumoniae* requerirá el análisis de otras regiones genómicas.

Keywords : cerdo, *Mycoplasma hyo- pneumoniae*, tipificación, persistencia, cadena de la polimerasa.

Recibido: 2 de octubre de 2012

Aceptado: 2 de marzo de 2013

Résumé - Monitorage de *Mycoplasma hyo- pneumoniae* avant et après un programme de dépoulation partielle utilisant un schéma de type basé sur le motif répété de la polysérine de p146

La diversité de *Mycoplasma hyopneumoniae* a été déterminée au moyen d’une méthode de typeage moléculaire basée sur le motif répété de la polysérine seien du gène p146. Trois ferme argentines reliées (A, B, et C) ont été étudiées. Afin d’obtenir une population exempte de pneumonie enzootique sur la Ferme C, un programme de dépoulation partielle a été mené en premier lieu sur la Ferme A et par la suite sur la Ferme B. Finalement, la Ferme C a été peuplée avec des porcelets sevrés hâtivement provenant de la Ferme B. Afin d’évaluer le succès du programme de dépoulation partielle, les animaux sur les fermes ont été surveillés pour la présence de signes cliniques ainsi qu’au moyen de tests sérologiques, l’examen des poumons à l’abattoir, et par réaction

Keywords: porc, *Mycoplasma hyopneumoniae*, typage, persistance, chaîne de la polymérase.

Reçu: 2 octobre 2012

Accepté: 2 mars 2013

This article is available online at http://www.aasv.org/shap.html.
The criterion to define before ("Before") and after ("After") the partial depopulation program, determining the success rate of approximately 80% to 90%, was obtained. Despite the use of control strategies, it was concluded that, although the disease (enzootic pneumonia) was eradicated, *M. hyopneumoniae* remained in the three herds. This conclusion was supported by detection of *M. hyopneumoniae* by nPCR, concurrent with the absence of clinical signs, a low percentage of seropositive animals (which had low ELISA titers), and lung lesions observed histologically that could have been caused by other pathogens.

Mycoplasma hyopneumoniae Typing

Mycoplasma hyopneumoniae typing was performed to determine *M. hyopneumoniae* diversity before and after the partial depopulation program on farms A and B, and to study the initial population on Farm C. The criterion to define before ("Before") and after ("After") the partial depopulation
program was the following: we assumed that Before could be represented by the sow population, since they were never removed from the facilities, and After by the offspring born after the hiatus on farrowing. The initial population on Farm C was considered a post-eradication population.

All DNA samples selected for typing had tested positive for *M. hyopneumoniae* in a previously reported study using the nPCR protocol described by Calsamiglia et al. All DNA samples had been extracted from nasal swabs using a commercial kit (DNAzol; Invitrogen, Carlsbad, California) and were stored at -20°C. According to our previous experience, the genetic material obtained from nasal swabs could not be amplified by a standard PCR, and therefore the samples (n = 189) were analyzed by the nPCR developed by Tamiozzo et al., targeting the region of the p146 gene that codes for a serine repeat motif. This protocol comprises a first reaction performed with the primers described by Tamiozzo et al and a second reaction using 2 µL of the first reaction product and the conditions and primers described by Mayor et al.

Twenty-five samples rendered a product with the nPCR used for *M. hyopneumoniae* typing. Polymerase chain reaction products were purified (QIAquick PCR Purification Kit; Qiagen, Foster City, California), quantified, and sequenced (ABI 3130xl; Applied Biosystems, Foster City, California) with the primers proposed by Mayor et al. The number of serine repeats (which were encoded by the codons TCT, TCA, and TCC) was determined by viewing the sequences with the Chromas 2.32 software (Technelysium Pty Ltd, Brisbane, Australia). Typing results are shown in Table 1. On Farm A, only one strain of *M. hyopneumoniae* was identified, with a series of 21 serine repeats, both in six sows (Before) and one 21- to 22-week-old pig (After). On Farm B, three different *M. hyopneumoniae* strains were detected: one with 16 serine repeats from a sow (Before), another with 21 repeats from five of the offspring (After; 2-week-old piglets), and the third one, with 14 repeats, detected in a sow (Before) and a 21- to 22-week-old pig (After). Among the population of Farm C, only one type, with 14 repeats, was identified in all animals of the initial population that had been nPCR-positive (10 pigs).

Discussion

The fact that *M. hyopneumoniae* remained on farms A and B after the application of a partial depopulation program and was also present among the initial population of Farm C has been previously discussed. In that report, it was concluded that the clinical-pathological entity was eradicated, but *M. hyopneumoniae* remained, as it was detected by nPCR although clinical signs (cough) were absent, lung lesions were not specific, and a low percentage of seropositive 21- to 22-week-old pigs was observed. The present results support this conclusion, as some of the genetic types of *M. hyopneumoniae* identified were detected both before and after the partial depopulation program.

Not all the DNA samples from nasal swabs that had tested positive for *M. hyopneumoniae* could be amplified by the nPCR used in this study. This could be due either to a greater sensitivity of the nPCR designed for *M. hyopneumoniae* detection than the nPCR designed for typing *M. hyopneumoniae* strains, to variability in the primer binding sites, to DNA degradation (because repeated freezing and thawing of DNA samples may shear the DNA), or to false-positive results for *M. hyopneumoniae* in the previous analysis of the samples, although precautionary measures were taken to prevent cross contamination. However, this is not the focus of this report.

Even with a limited number of positive samples, it was possible to detect *M. hyopneumoniae* diversity before and after application of the partial depopulation programs. On Farm A, only one strain of *M. hyopneumoniae* could be identified, both before and after application of the partial depopulation program. This was a farrow-to-finish herd, and surely the fact that it was a one-site herd favored *M. hyopneumoniae* dissemination in spite of the application of the partial depopulation program, due to intermittent elimination of the agent and progressive spread of *M. hyopneumoniae* in farrow-to-finish herds compared to multiple-site systems.

Nevertheless, on Farm B, three different *M. hyopneumoniae* strains could be detected, one of them present both before and after application of eradication measures. The existence of more than one strain within a herd has been previously reported by Vranckx et al., who found differences in diversity and persistence of *M. hyopneumoniae* strains among herds, probably related in some cases to management practices characteristic of each farm. An *M. hyopneumoniae* type with 21 serine repeats was found on farms A and B, while a type with 14 serine repeats was found on farms B and C. It has been well documented

Table 1: Genetic typing of Mycoplasma hyopneumoniae DNA extracted from nasal swabs of sows and their offspring on three Argentinian swine farms*

<table>
<thead>
<tr>
<th>Animals tested</th>
<th>Farm A</th>
<th>Farm B</th>
<th>Farm C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sows Before</td>
<td>Offspring After</td>
<td>Sows Before</td>
</tr>
<tr>
<td>No. of serines (no. of samples)</td>
<td>21 (6)</td>
<td>21 (1)†</td>
<td>14 (1); 16 (1)</td>
</tr>
</tbody>
</table>

* Two related Argentinian swine farms (A and B) underwent a partial depopulation program to eradicate *M. hyopneumoniae*. Farm C was a new site populated with early-weaned offspring from Farm B. Typing was performed to assess the genetic diversity between Before (sows tested) and After (offspring tested) the partial depopulation program on farms A and B, and to study the initial population on Farm C. The number of serines encoded in the repeat motif of the p146 gene in DNA from nasal swabs samples was determined by a nested polymerase chain reaction using as outer primers those described by Tamiozzo et al and as inner primers those described by Mayor et al. Sequencing was performed using this last primer pair.

† 21- to 22-week-old pigs.

‡ 2-week-old piglets.
that *M. hyopneumoniae* can be easily spread among farms and that long-distance airborne transmission of an *M. hyopneumoniae* strain can occur as far as 9.2 km. In this case, farms A and B were approximately 7.6 km from each other, but due to the operational proximity between farms and animal flow before application of the partial depopulation program, it is possible that entry of carrier pigs was responsible for transmission of an *M. hyopneumoniae* strain from Farm A to Farm B. However, other routes of transmission, such as fomites or personnel, could have also played an important role.

Farm C was approximately 460 km from the others. In this case, trucks that transferred the initial population, personnel, or carrier pigs might be responsible for transport of the same *M. hyopneumoniae* strain from Farm B to Farm C. The source of infection for Farm C might have been explained if further epidemiological testing had been performed.

More discriminatory molecular tools, simultaneously targeting different genomic regions, such as multiple-locus variable number tandem repeat (VNTR) analysis, have been reported as useful to determine *M. hyopneumoniae* genetic diversity in clinical samples without prior cultivation and have been also been applied to study the dynamics of infection. In these cases, standard PCRs were performed using DNA extracted from bronchoalveolar lavage fluid and tracheal swabs. In the present study, the main limitation to analyzing other regions of the genome was the sensitivity of the PCRs, since in our experience it is difficult to detect *M. hyopneumoniae* from nasal-swab samples unless an nPCR is performed. Therefore, to determine *M. hyopneumoniae* genetic diversity in clinical samples without killing animals or performing invasive sampling, development of nPCRs targeting different VNTR loci is needed for the study of nasal-swab samples. Before, during, and after application of control or eradication programs, identification of the source of *M. hyopneumoniae* infection, as well as other pathogens, is crucial for the adoption, implementation, development, and surveillance of control strategies to warrant disease-free status. This report shows that the nPCR targeting the polyserine repeat motif of the p146 gene was useful for typing *M. hyopneumoniae*, a fastidious microorganism, from nasal-swab samples. The nPCR was able to identify up to three *M. hyopneumoniae* strains within a single herd, two of them shared with other operationally related farms. We are aware that study of other genomic regions could have been useful to achieve a higher discrimination, but specific nPCRs have yet to be developed to allow *M. hyopneumoniae* typing from nasal-swab samples, which are useful for monitoring live animals.

Implications

- Typing *M. hyopneumoniae* by an nPCR targeting the serine repeat motif of the p146 gene is useful to identify several genotypes among pigs from one herd.
- *M. hyopneumoniae* strains can remain in a herd in spite of the application of control measures.
- Unambiguous discrimination of *M. hyopneumoniae* will require analysis of other genomic regions.
- Development and validation of nPCRs targeting other VNTR loci are needed to detect diversity of *M. hyopneumoniae* from nasal-swab samples.
- Control measures for *M. hyopneumoniae* eradication must be revised to identify reasons that could explain the failure of the eradication program used in these herds.

Acknowledgements

This work was supported by grants from Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, República Argentina.

Conflict of interest

None reported.

References

* Non-refereed references.