In vitro antimicrobial susceptibility of *Mycoplasma hyorhinis* field isolates collected from swine lung specimens in Korea

Lee Yun Jin, DVM, MS; Moon Hyoung-Joon, DVM, PhD; Kang Bo-Kyu, DVM, PhD; Kim Jong Man, DVM, PhD; Lee Wan-Kyu, DVM, PhD

Summary

Mycoplasma hyorhinis is a very common inhabitant of the respiratory tract of pigs with or without pneumonia. Because there is no vaccine available to control *M. hyorhinis*, chemotherapy is the most practical way to treat disease associated with *M. hyorhinis* infection. Therefore, we tested the antimicrobial susceptibility of *M. hyorhinis* isolates recovered from lung specimens of pigs using the liquid minimum inhibitory concentration (MIC) method in tests with 12 antimicrobial agents. The MIC₅₀, MIC₉₀, and range of MICs against 10 field isolates from Korea and the reference strain (ATCC 17981) were investigated. *Mycoplasma hyorhinis* field isolates were sensitive to lincomycin and tylosin but resistant to erythromycin, spectinomycin, and streptomycin. The MIC₉₀ for lincomycin and tylosin were 0.5 µg per mL and 1.0 µg per mL, respectively. The MIC₉₀ for amoxicillin, erythromycin, penicillin, spectinomycin, and streptomycin were ≥ 64 µg per mL. The MIC₉₀ for gentamicin, kanamycin, and neomycin were 4.0 µg per mL, 8.0 µg per mL and 16 µg per mL, respectively. For oxytetracycline and tetracycline, the MIC₅₀ was 4.0 µg per mL and the MIC₉₀ was 16 µg per mL. These results provide practical information for treatment of *M. hyorhinis* infection in pigs.

Keywords: swine, *Mycoplasma hyorhinis*, antimicrobial susceptibility, minimum inhibitory concentrations

Received: May 16, 2013
Accepted: October 23, 2013

Resumen - Susceptibilidad antimicrobiana in vitro de los aislados de campo del *Mycoplasma hyorhinis* colectados de muestras de pulmón de cerdo en Corea

El *Mycoplasma hyorhinis* es un habitante muy común del tracto respiratorio de cerdos con o sin neumonía. Debido a que no hay vacuna disponible para controlar el *M. hyorhinis*, la quimioterapia es la manera más práctica para tratar la enfermedad asociada con la infección de *M. hyorhinis*. Por tanto, pusimos a prueba la susceptibilidad antimicrobiana de los aislados del *M. hyorhinis* recuperados de las muestras de pulmón de cerdos utilizando el método de concentración mínima inhibitoria (MIC por sus siglas en inglés) de líquido en pruebas con 12 agentes antimicrobianos. Se investigaron el MIC₅₀, MIC₉₀, y el rango de los MIC_s contra 10 aislados de campo de Corea y la cepa de referencia (ATCC 17981). Los aislados de campo del *M. hyorhinis* fueron positivos a la lincomicina y a la tilosina pero resistentes a la eritromicina, spectinomicina, y estreptomicina. El MIC₉₀ para la lincomicina y la tilosina fueron de 0.5 µg por mL y 1.0 µg por mL, respectivamente. El MIC₉₀ para la eritromicina, spectinomicina, amoxicilina, penicilina, y estreptomicina fueron ≥ 64 µg por mL. El MIC₉₀ para la gentamicina, kanamicina, y neomicina fueron de 4.0 µg por mL, 8.0 µg por mL, y 16 µg por mL, respectivamente. Para oxitetraciclina y tetraciclina, el MIC₅₀ fue 4.0 µg por mL y el MIC₉₀ fue 16 µg por mL. Estos resultados proveen información práctica para el tratamiento de la infección de *M. hyorhinis* en cerdos.

Résumé - Sensibilité antimicrobienne in vitro d’isolats de champs de *Mycoplasma hyorhinis* obtenus à partir de spécimens de poumons de porc en Corée

Mycoplasma hyorhinis est un habitant très fréquent du tractus respiratoire des porcs avec et sans pneumonie. Étant donné qu’il n’y a aucun vaccin disponible pour limiter *M. hyorhinis*, l’utilisation d’antimicrobien est le moyen le plus pratique pour traiter la maladie associée à l’infection par *M. hyorhinis*. Ainsi, nous avons testé la sensibilité antimicrobienne d’isolats de *M. hyorhinis* obtenus de spécimens de poumons de porcs en utilisant la méthode de concentration minimale inhibitrice (CMI) en milieu liquide avec 12 agents antimicrobiens. Les CIM₅₀ et CIM₉₀, de même que l’étendue des CIM de 10 isolats de champs provenant de la Corée et de la souche de référence (ATCC 17981) ont été étudiées. Les isolats de champs de *M. hyorhinis* étaient sensibles à la lincomycine et le tylosin mais résistants à l’érythromycine, la spectinomycine, et la streptomycine. Les CIM₉₀ pour la lincomycine et le tylosin étaient respectivement de 0.5 µg par mL et 1.0 µg par mL. Les CIM₉₀ pour l’érythromycine, la spectinomycine, l’amoxicilline, la pénicilline, et la streptomycine étaient ≥ 64 µg par mL. Les CIM₉₀ pour la gentamicine, la kanamycine, et la néomycine étaient respectivement de 4 µg par mL, 8 µg par mL, et 16 µg par mL. Pour la tétracycline et l’oxytetracycline, la CIM₉₀ était de 4 µg par mL et la CIM₉₀ de 16 µg par mL. Ces résultats fournissent des informations pratiques pour le traitement des infections à *M. hyorhinis* chez les porcs.
Mycoplasma hyorhinis is a common isolate from the upper respiratory tract and tonsils of pigs exhibiting pleuritis, peritonitis, pericarditis, polyserositis, or polyarthritis. However, it may be isolated from swine lungs with or without pneumonia. Mycoplasma hyorhinis is responsible for considerable economic losses through growth retardation, poor feed conversion, inflammation, immunosuppression, and increased susceptibility to other infectious swine diseases. It may occur as a secondary agent associated with both catarrhal bronchopneumonia and interstitial pneumonia.

Chemotherapy is the most practical way to treat disease associated with M. hyorhinis infection, because no vaccine is available. Several studies have been conducted using the broth dilution method to examine the antimicrobial susceptibility of M. hyorhinis. In Korea, M. hyorhinis infection is gradually increasing as a secondary infection with porcine reproductive and respiratory syndrome virus, but the antimicrobial susceptibility of M. hyorhinis has not been thoroughly investigated. Therefore, we tested the antimicrobial susceptibility of M. hyorhinis isolated from pig lung specimens using the liquid minimum inhibitory concentration (MIC) method described by Hannan.

Isolation and identification of M. hyorhinis

A total of 10 M. hyorhinis field isolates were tested in this study. Isolates were collected directly from diagnostic swine lung specimens submitted to the Research Unit at Green Cross Veterinary Products Co, Ltd, Yongin, Korea, during 2011 and 2012. No animal-use protocol was necessary because only laboratory specimens were used.

The lung specimens had been collected from 23 weaned pigs, 30 to 70 days old, from nine swine farms. Isolates were cultured in Friis broth and on agar plates, then tested for purity as single colonies on agar as follows. The lung specimen was cultured in Friis broth. The multiplex polymerase chain reaction (PCR) method for Mycoplasma hyopneumoniae and M. hyorhinis was performed and samples in which M. hyorhinis was identified as a single band were inoculated on Friis agar. Single colonies were re-inoculated into Friis broth and PCR was again performed to identify M. hyorhinis.

<table>
<thead>
<tr>
<th>Class</th>
<th>Agent</th>
<th>MIC<sub>90</sub> (µg/mL)</th>
<th>MIC<sub>90</sub> (µg/mL)</th>
<th>Range</th>
<th>Reference strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminoglycoside</td>
<td>Gentamicin</td>
<td>2.0</td>
<td>4.0</td>
<td>0.5-8.0</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Kanamycin</td>
<td>2.0</td>
<td>8.0</td>
<td>1.0-8.0</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Neomycin</td>
<td>8.0</td>
<td>16</td>
<td>2.0-32</td>
<td>≥ 64</td>
</tr>
<tr>
<td></td>
<td>Spectinomycin</td>
<td>≥ 64</td>
<td>≥ 64</td>
<td>4.0 to ≥ 64</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>Streptomycin</td>
<td>≥ 64</td>
<td>≥ 64</td>
<td>≥ 64</td>
<td>4.0</td>
</tr>
<tr>
<td>β-lactam</td>
<td>Amoxicillin</td>
<td>≥ 64</td>
<td>≥ 64</td>
<td>≥ 64</td>
<td>≥ 64</td>
</tr>
<tr>
<td></td>
<td>Penicillin</td>
<td>≥ 64</td>
<td>≥ 64</td>
<td>≥ 64</td>
<td>≥ 64</td>
</tr>
<tr>
<td>Lincosamide</td>
<td>Lincomycin</td>
<td>≤ 0.25</td>
<td>≤ 0.25</td>
<td>≤ 0.25-1.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Macrolide</td>
<td>Erythromycin</td>
<td>16</td>
<td>≥ 64</td>
<td>8.0 to ≥ 64</td>
<td>≤ 0.25</td>
</tr>
<tr>
<td></td>
<td>Tyllosin</td>
<td>0.5</td>
<td>1.0</td>
<td>≤ 0.25-2.0</td>
<td>≤ 0.25</td>
</tr>
<tr>
<td>Tetracycline</td>
<td>Oxytetracycline</td>
<td>4.0</td>
<td>16</td>
<td>≤ 0.25-32</td>
<td>≤ 0.25</td>
</tr>
<tr>
<td></td>
<td>Tetracycline</td>
<td>4.0</td>
<td>16</td>
<td>≤ 0.25-32</td>
<td>≤ 0.25</td>
</tr>
</tbody>
</table>

* Mycoplasma hyorhinis reference strain ATCC 17981. Field strains were isolated from lung specimens submitted to the Research Unit at Green Cross Veterinary Products Co, Ltd, Yongin, Korea, during 2011 and 2012. Specimens were from 23 weaned pigs (30-70 days old) from nine swine farms.
† MIC required to inhibit growth of 50% of M. hyorhinis isolates.
‡ MIC required to inhibit growth of 90% of M. hyorhinis isolates.
low) denoted the reciprocal number of color changing units (CCU), and the inoculum standard number of organisms was 10\(^3\) CCU per mL. A final volume of 100 µL of each antimicrobial agent was prepared by serial twofold dilutions (64 to 0.25 µg per mL) in sterile distilled water in a 96-well microplate. The same volume of isolate culture (10\(^5\) CCU per mL) was inoculated into each well of plates containing diluted antimicrobials. Each plate contained uninoculated Friis broth as a sterility control and drug-free inoculum as a growth control. Plates were sealed, incubated at 37°C for 5 to 7 days, and observed daily until color changes in the wells were complete. The value of the MIC was defined as the lowest antimicrobial concentration to inhibit color change when the growth control changed from red to yellow (Figure 1).

Results

Table 1 shows the MIC\(_{50}\), MIC\(_{90}\), and range of MICs against the 10 \(M\) hyorhinis field isolates and the reference strain. Against the field isolates, the MIC\(_{90}\) was ≥ 64 µg per mL for amoxicillin, erythromycin, penicillin, spectinomycin, and streptomycin; 1.0 µg per mL for lincomycin; and 0.5 µg per mL for tylosin. Against the reference strain, the MIC was ≥ 64 µg per mL for amoxicillin, neomycin, and penicillin; ≤ 0.25 µg per mL for erythromycin, oxytetracycline, tetracycline, and tylosin; and 2.0 µg per mL for lincomycin.

Discussion

In this test, 10 \(M\) hyorhinis field isolates were resistant to spectinomycin and streptomycin (MIC ≥ 64 µg per mL). However, Ter Laak et al\(^6\) and Wu et al\(^7\) reported low MIC\(_{90}\) values for these antimicrobials against \(M\) hyorhinus (4 µg per mL and 2 µg per mL, respectively). In this study, the MIC of spectinomycin against the reference strain was low (4 µg per mL).

Susceptibility of the field isolates to oxytetracycline and tetracycline in this study was poor, with an MIC\(_{50}\) of 4.0 µg per mL and an MIC\(_{90}\) of 16 µg per mL for both oxytetracycline and tetracycline. Aarestrup et al\(^8\), Hamman et al\(^9\), Ter Laak et al\(^6\), and Wu et al\(^7\) found MIC\(_{90}\) of 0.25, 1.0, 2.0, and 2.5 µg per mL, respectively, for tetracycline. In this study, the MIC\(_{90}\) for erythromycin was high (≥ 64 µg per mL), in agreement with the results reported by Ter Laak et al\(^6\) and Wu et al\(^7\), who found MIC\(_{90}\) values ≥ 16 µg per mL, and Kobayashi et al\(^5\), who reported MIC\(_{90}\) values ≥ 100 µg per mL. The MIC\(_{90}\) was 1.0 µg per mL for tylosin and 0.5 µg per mL for lincomycin against the field isolates, in agreement with the results of other studies.\(^{5,6,8,9}\)

In general, \(M\)ycoplasma species are difficult to isolate and culture because of fastidious growth requirements and slow growth.\(^{5,6,9}\) For this reason, the MIC test for \(M\)ycoplasma species is complex and difficult to study. The results of this study provide new data regarding the susceptibility of Korean \(M\) hyorhinis field isolates to 12 antimicrobial agents. To the authors’ knowledge, these are the first published data concerning the antimicrobial susceptibility of Korean \(M\) hyorhinis isolates. Further investigations should be conducted at regular intervals to determine the MICs of antimicrobials against additional field strains. Appropriate use of antimicrobial agents after a susceptibility test is the most practical way to treat \(M\) hyorhinis infection in pigs.

Implication

The Korean field strains of \(M\) hyorhinis tested in this study are sensitive to lincomycin and tylosin but resistant to erythromycin, spectinomycin, and streptomycin.

Acknowledgements

This research was part of a project titled “The production of amphidinol from marine microalgae culture and development of mycoplasmal elimination kit using amphidinol,” funded by the Ministry of Land, Transport and Maritime Affairs, Korea.

Conflict of interest

None reported.

References

