Fact sheet – Feed efficiency adjustments to compare group close-outs in finishing pigs

Márcio A. D. Gonçalves DVM, PhD; Steve S. Dritz, DVM, PhD; Mike D. Tokach, MS, PhD; Joel M. DeRouchey, MS, PhD; Jason C. Woodworth, MS, PhD; Robert D. Goodband, MS, PhD

This practice tip includes a fact sheet on feed efficiency adjustments to compare group close-outs in finishing pigs.

Keywords: swine, feed efficiency, production, management

Received: July 24, 2015
Accepted: February 9, 2016

Conflict of interest
None reported.

Disclaimer
Scientific manuscripts published in the Journal of Swine Health and Production are peer reviewed. However, information on medications, feed, and management techniques may be specific to the research or commercial situation presented in the manuscript. It is the responsibility of the reader to use information responsibly and in accordance with the rules and regulations governing research or the practice of veterinary medicine in their country or region.

MADG, SSD: Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Manhattan, Kansas.
MDT, JMDR, JCW, RDG: Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, Kansas.

Corresponding author: Dr Márcio A. D. Gonçalves, Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Manhattan, Kansas.

Dr Gonçalves is currently with Genus PIC PLC, 100 Bluegrass Commons Blvd, Suite 2200, Hendersonville, TN 37075; Tel: 615-265-2729; Fax: 615-265-2848; E-mail: Marcio.Goncalves@GenusPLC.com.

This article was published as part of Dr Gonçalves’ PhD thesis, Kansas State University, Manhattan, Kansas; 2015.

This article is available online at http://www.aasv.org/shap.html.

Feed efficiency adjustments in finishing close-outs

Initial and final body weight (BW) are major factors affecting feed-to-gain ratio (F:G), because fat deposition is less efficient than protein deposition, and the rate of fat deposition increases relative to protein deposition as BW increases. A 1% increase in dietary net energy (NE) results in a 1% improvement in feed efficiency as long as NE loading values of the ingredients in the diet are correct. This assumes dietary lysine is not limiting, according to NRC requirements.

Equations for factors affecting F:G

Equation (1) accounts for initial and final BW:

\[
\text{Adjusted F:G} = \frac{\text{observed F:G} - \{\text{standardized initial BW (kg)} - \text{actual initial BW (kg)}\} \times \text{slope estimate} + \{\text{standardized final BW (kg)} - \text{actual final BW (kg)}\} \times \text{slope estimate}}{\text{average BW (kg)}}
\]

The slope estimate varies with energy level of the diet and genetic line, and slope estimates per kg BW range from 0.007 to 0.011. Use caution when applying these slope estimates to other genetic lines that have different body composition or growth curves.

Equation (2) accounts for initial and final BW and energy level of the diet:

\[
\text{Adjusted F:G} = \frac{\text{observed F:G} - \{\text{standardized initial BW (kg)} - \text{actual initial BW (kg)}\} \times \text{slope estimate} + \{\text{standardized final BW (kg)} - \text{actual final BW (kg)}\} \times \text{slope estimate} - \{(\text{standardized energy level} - \text{actual energy level}) + \text{standardized energy level}\} \times \text{observed F:G}}{\text{average BW (kg)}}
\]

Equation (3) accounts for NE, average BW, and standardized ileal digestible (SID) lysine (Lys). This equation predicts F:G and then is modified to calculate an adjusted F:G that is based on the observed F:G:

\[
\text{F:G prediction} = 1 ÷ \{(0.0000004365 \times \text{NE}) - (0.00162 \times \text{average BW}) - (0.08023 \times \text{SID Lys}) + (0.0000094 \times \text{NE} \times \text{SID Lys}) + 0.3496\}
\]

\[
\text{Adjusted F:G} = \frac{(\text{F:G from Equation 3 using standardized values}) \times (\text{F:G from Equation 3 using actual values}) \times \text{observed F:G}}{\text{average BW (kg)}}
\]

where NE is the weighted average kcal of NE per kg. Average BW (kg) is the average of initial and final BW, and SID Lys (%) is the weighted average SID Lys. The NE and SID Lys are weighted on the basis of the amount of feed in each phase during the finishing period. This equation encompasses a range of BW from 20.8 to 138.2 kg. Information regarding NE of ingredients can be found in NRC’s Nutrient Requirements of Swine.

Other factors to consider when adjusting for F:G. The impact of mortality on F:G can be calculated by using the average day in which the mortality occurred in the close-out. If mortality is assumed to occur at the mid-point of the finishing phase, for every 1% increase in mortality, F:G will be poorer by 0.5% to 0.8%. Pelleting improves F:G by about 4% to 6% for pelleted diets with less than 20% fines. Feed efficiency will be poorer by 0.002857 for each 1% fines in the pelleted diet. Grain particle size improves F:G by 1.0% to 1.2% for each 100-micron reduction from 900 to 500 microns. Gilts have approximately 1.7% better F:G than mixed gender, whereas barrows have 1.7% poorer F:G than mixed gender. Ractopamine fed for 21 days prior to market decreases finisher F:G by 1.8% for 5 ppm (5 g per tonne) inclusion and 3.4% for 10 ppm (10 g per tonne) inclusion, in a summary of 12 experiments. In a meta-analysis of 10 studies, F:G in immunocastrated barrows was 4% lower than in surgically castrated barrows for the whole finishing phase, the meta-analyses included only data from studies with animals slaughtered between 4 and 6 weeks after the second immunization (market weight, 107 to 110 kg). The F:G advantage would be expected to be less if animals were slaughtered more than 6 weeks after the second immunization.

Examples of differences in F:G adjustment that are based on the change of a single factor from the baseline system values are shown in Table 1, using a feed efficiency adjustment calculator. For example, when comparing two close-outs with similar observed F:G, if one was fed a diet with higher energy, the adjusted F:G would be poorer than the observed F:G, reflecting the way that group would have performed if the pigs had received diets containing the same amount of dietary energy as the lower energy group.

These adjustments are useful because they account for the various known factors that affect F:G and that are normally present in production systems. A feed efficiency adjustment calculator that accounts for these factors can be found at http://www.asi.k-state.edu/research-and-extension/swine/calculators.html.
Table 1: Feed efficiency adjustment simulations for different factors in a barn close-out, accounting for mortality and pelleting.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Baseline</th>
<th>Entry weight</th>
<th>Final weight</th>
<th>Dietary energy</th>
<th>Mortality</th>
<th>Pelleting</th>
<th>Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed F:G</td>
<td>2.90</td>
<td>2.90</td>
<td>2.90</td>
<td>2.90</td>
<td>2.90</td>
<td>2.90</td>
<td>2.90</td>
</tr>
<tr>
<td>Initial weight (kg)</td>
<td>22</td>
<td>25</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Final weight (kg)</td>
<td>130</td>
<td>130</td>
<td>135</td>
<td>130</td>
<td>130</td>
<td>130</td>
<td>130</td>
</tr>
<tr>
<td>Weighted SID Lys (%)</td>
<td>0.78</td>
<td>0.78</td>
<td>0.78</td>
<td>0.78</td>
<td>0.78</td>
<td>0.78</td>
<td>0.78</td>
</tr>
<tr>
<td>Weighted energy (kcal) NE/kg</td>
<td>2527</td>
<td>2527</td>
<td>2527</td>
<td>2653</td>
<td>2527</td>
<td>2527</td>
<td>2527</td>
</tr>
<tr>
<td>Mortality (%)*</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>2.5</td>
<td>7.5</td>
<td>2.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Average mortality (dpp)</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Pelleting (Yes or No)†</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>If pelleted (% fines)†</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>Gender‡</td>
<td>Mixed</td>
<td>Mixed</td>
<td>Mixed</td>
<td>Mixed</td>
<td>Mixed</td>
<td>Mixed</td>
<td>Barrows</td>
</tr>
<tr>
<td>Adjusted F:G§</td>
<td>NA</td>
<td>2.88</td>
<td>2.87</td>
<td>2.98</td>
<td>2.77</td>
<td>3.10</td>
<td>2.85</td>
</tr>
</tbody>
</table>

* Assumed impact of mortality over the baseline F:G.
† Assumed to reduce F:G by 5% when diets were in pellet form, increase F:G by 0.002857 for each 1% fines in the pelleted diet.
‡ Assumed that F:G in barrows is approximately 1.7% lower than mixed gender based on NRC1 model.
§ Developed using Equation 3: 1 ÷ [(0.000004365 × NE) – (0.00162 × Average BW) – (0.08023 × SID Lys) + (0.000094 × NE × SID Lys) + 0.3496]. Then, adjusted F:G = (F:G from Equation 3 using standardized values) ÷ (F:G from Equation 3 using actual values) × observed F:G.

The range of BW that this equation encompasses is 20.8 to 138.2 kg.

F:G = feed-to-gain ratio; SID Lys = standardized ileal digestible lysine; NE = net energy; dpp = days post placement; NA = not applicable.

Acknowledgement

Contribution no. 16-010-J from the Kansas Agricultural Experimental Station, Manhattan, KS 66506-0210.

References