Maximizing value and minimizing waste in clinical trial research in swine: Selecting interventions to build an evidence base

Jan M. Sargeant, DVM, PhD, FCAHS; Annette M. O’Connor, BVSc, DVSc, FANZCVS; Terri L. O’Sullivan, DVM, PhD; Alejandro Ramirez, DVM, MPH, PhD, DACVPM

Summary
Researchers conduct a trial to compare an intervention of interest to a comparison group. Initially, researchers should determine whether a trial is evaluating superiority, equivalence, or noninferiority. This decision will guide the choice of a placebo versus active comparison group. Interventions, as well as baseline management, should be comprehensive to allow replication or clinical application. It is necessary to build a body of evidence across multiple trials to apply evidence-based decision-making. To achieve this, at least one intervention in every trial should be an intervention that has been used in at least one previously published trial.

Keywords: swine, clinical trial, evidence, interventions, linking networks

Received: December 3, 2021
Accepted: February 15, 2022

In swine health and production, as in veterinary medicine in general, there is increasing emphasis on the use of evidence to inform decisions related to health and management. This evidence comes from research. However, in the biomedical research field, it has been estimated that 85% of the research that is conducted is wasted (ie, not useful) because the questions asked are not relevant, the design and methods are inadequate, full reports are not accessible, or the results are biased or unusable. The extent of research wastage is unknown and may be an issue in swine research, or whether there are ways the research community can better maximize the value of our research. However, a consideration of this issue and reflection on how we as a research community can maximize the value of our research is warranted.

In this commentary, we focus on clinical trials intended to assess the efficacy of an intervention to prevent or treat a clinical problem or to improve productivity, although the concepts have applicability to all study designs and research questions. Of the primary research designs, well-conducted clinical trials provide the highest level of evidence for evaluating the efficacy of an intervention when it is ethical and feasible to allocate study subjects to intervention groups. A hallmark of a clinical trial is the use of a comparison group. A comparison group, which may be a placebo or another intervention, allows the investigator

JMS, TLO: Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada.
AMO: Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, Michigan.
AR: University of Arizona College of Veterinary Medicine, Oro Valley, Arizona.
Corresponding author: Dr Jan M. Sargeant, 2536 Stewart Building, Ontario Veterinary College, University of Guelph, 50 Stone Road East, Guelph, Ontario, Canada N1G 2W1; Tel: 519-824-4120 Ext. 54045; Email: sargeanj@uoguelph.ca.
to distinguish between the impact of the intervention on outcomes (preselected factors that are hypothesized to be a result or consequence of the intervention) versus other factors, such as the natural progression of disease, veterinarian or producer expectations, or other interventions.5

In designing a clinical trial, the selection of intervention and comparator groups is of paramount importance. An individual researcher may select an intervention because they are interested in evaluating the efficacy of that specific intervention. However, researchers also should consider the potential for the results of the trial to contribute to building a body of evidence for the prevention or treatment of a clinical problem or productivity issue. This does not restrict the selection of the intervention of interest. Rather, the selection of the comparison group(s) can impact the larger usability of the trial in contributing to a body of evidence. Selecting interventions to build a body of evidence will be the focus of this article. The intention is to focus on principles of trial design, and not drug regulatory requirements.

Defining the trial purpose and intervention type

Prior to selecting the comparison group(s), the trial purpose should be determined. A trial may be intended to evaluate whether the intervention of interest is superior to another intervention (superiority), has the same efficacy as another intervention (equivalence), or is not worse than another intervention (noninferiority).6,7 With a superiority trial, the null hypothesis is that there is no difference between the intervention groups; therefore, the alternative hypothesis is that the intervention groups differ. With an equivalence design, the null hypothesis is that the interventions differ by at least a prespecified amount, with the alternative hypothesis being that there is no difference between the interventions. A new intervention that has equivalent efficacy to an existing intervention still may be preferable based on cost, few side effects, easier dosing,8 or shorter withdrawal time for livestock. Finally, for a noninferiority trial, the null hypothesis is that the intervention of interest is worse than the comparator by more than a margin of noninferiority (a predetermined acceptable difference) and the alternative hypothesis is that the intervention of interest is not worse than the comparator by the margin of noninferiority.6,9 The decision on the study purpose is important, as it will impact the required sample size and the analysis and interpretation of the trial results. Typically, superiority trials have the smallest sample size, followed by noninferiority trials, with equivalence trials having the largest required sample size.6 The use of intention to treat (ITT) versus per-protocol (PP) analysis also will differ. With ITT analysis, individuals remain in the group to which they were originally allocated, regardless of whether they completed the intervention as intended. With PP analysis, individuals are only included in an intervention group if they completed the intervention protocol as intended. Therefore, PP analysis reflects the biological efficacy of an intervention whereas ITT analysis relates to the real-world effectiveness, where not all individuals comply with or complete the exact intervention protocol. While ITT is the recommended approach to analysis of superiority trials, both ITT and PP analysis should be conducted for noninferiority and equivalence trials.6-8

Based on common statistical approaches and narrative interpretations of trial results provided by authors, it might reasonably be assumed that most trials in the swine literature are intended to evaluate superiority. However, explicit reporting of the trial purpose is uncommon. A word search of 179 clinical trials from 146 articles included in a recent systematic review and network meta-analysis of vaccinations for bacterial respiratory diseases in swine10 revealed that none of the studies were explicitly described by the authors as superiority trials. Two of the trials were described by the authors as intending to evaluate equivalence of interventions11,12 and the authors of one trial stated in the discussion section that the primary aim was to evaluate noninferiority.13 Additional examples in the swine literature include a noninferiority trial comparing antibiotic treatments for Actinobacillus pleuropneumoniae in growing-fattening pigs in Europe14 and an equivalence trial evaluating concurrent vaccinations for respiratory illness.15

The trial purpose also has implications for the type of comparison group, specifically to whether a placebo or an active intervention is the appropriate comparator. Using a placebo, sham, or nontreated control as the comparison group allows the investigator to evaluate whether an intervention is better than nothing. Thus, placebo comparators only make sense for trials intended to evaluate superiority. In the initial stages of identifying efficacious interventions for a clinical problem, there may not be any interventions that have consistently been shown to be superior to a nonactive control. In this instance, the use of placebo comparison groups may be appropriate. However, using placebo controls often does not address a question of interest to producers and veterinarians who generally want to know what product to use rather than whether to treat or prevent at all. Additionally, if an efficacious alternative is available, it may be inconsistent with animal welfare concerns and uneconomical to expose animals to a placebo control.5,16 Unless there is previous empirical evidence that another intervention is consistently superior to a placebo, the results of head-to-head comparisons of active ingredients are not interpretable; if two interventions are found to be equivalent (or a new intervention is found to be noninferior), it is possible that both are highly efficacious or that both are not efficacious at all.9,17,18 In addition, if multiple intervention options exist, researchers planning trials designed to evaluate noninferiority or equivalence might use the least efficacious alternative intervention as the comparator. This could potentially lead to progressively less efficacious interventions being identified as equivalent or noninferior, a phenomenon referred to as “biocreep.”4,8,18 Although more costly to perform, a viable option to consider is to add a placebo arm to a trial. For example, if the intention was a pairwise comparison of the intervention of interest to another intervention known to be efficacious, adding a placebo arm will ensure confirmation of the superiority of the comparator in the study population.17 The sample size required for the superiority comparison will be less than the equivalence comparison, so the additional cost may be manageable.

Defining the intervention

When writing the report of a clinical trial, it is essential that the intervention groups are described in sufficient detail to allow replication. The REFLECT-statement reporting guidelines for clinical trials in livestock, highlighted in the instructions to authors by the Journal of Swine Health and Production, recommend that a trial report include “precise
details of the interventions intended for each group, the level at which the intervention was allocated, and how and when interventions were actually administered. The REFLECT-statement explanation and elaboration document provides an example of comprehensive intervention reporting, as well as further information on the detail needed to allow for replication. Compared to other trial designs, the REFLECT-statement is important that baseline management practices that all trial animals have been exposed to are completely described.

Building a body of research by linking interventions

A final consideration moves beyond the design of a single trial to the building of a body of evidence that can be used for evidence-informed decision-making. Replication is a hallmark of science; trials evaluating the efficacy of the same intervention may reach different conclusions and it is not uncommon for highly cited clinical research showing efficacy of interventions to subsequently be contradicted. Results from a single trial are based on a sample of study subjects. Therefore, it would be expected that different samples of animals from the same target population would lead to somewhat different study findings due to chance (sampling error). In addition to the statistical argument for replication, there is a scientific argument wherein the efficacy of interventions is more likely to be correctly identified if the results have been seen in multiple trials with the same interventions and outcomes evaluated under similar conditions and in similar populations.

When making clinical decisions, the relative (comparative) efficacy of all available intervention options is of interest; veterinarians and producers usually want to know which intervention is best, rather than whether to use any one specific intervention. Network meta-analysis is an extension of meta-analysis wherein relative efficacy can be estimated for all interventions for a specific condition and outcome. However, to estimate relative efficacy in a network meta-analysis, at least one intervention arm in the trial needs to have been evaluated in at least one other trial with the same outcome. As a case study to explore this issue in swine health, Figures 1 and 2 were created using data from a systematic review of preventive antibiotics for respiratory disease in swine to illustrate the relationships between the interventions in the included trials. Each node represents an intervention used in at least one trial, with the lines between nodes illustrating the comparisons between interventions that were evaluated in the trials. Figure 1 shows the network of each unique intervention as described by the trial authors; for instance, if a trial compared high dose to low dose for the same antibiotic or if different modes of administration for a single antibiotic were compared, these were considered as unique interventions. The majority of comparisons were to a nonactive control (the green central node in the larger cluster of interventions), with very few head-to-head comparisons outside of a single trial. In addition, there were 8 head-to-head comparisons with no replication (the 2-node clusters not connected to the larger cluster) and therefore no possibility of estimating the efficacy of these interventions compared to other interventions that had been evaluated in the literature. In Figure 2, interventions were amalgamated, such that each node represents an antibiotic, with all doses and routes of administration for each antibiotic combined into a single intervention. When interventions were combined in this manner, there was only one trial that did not have a common intervention arm with any other trial. There also was more replication and more connections between the interventions. However, considerable detail on the efficacy of each unique intervention was lost by combining different doses and routes of administration together. End-users may also have concerns about the assumptions made to amalgamate interventions into a single intervention, ie, different doses and baselines representing the same intervention. To maximize the value of individual trials, consideration should be given to designing trials to ensure that at least one intervention in their trial has been included in a previous trial (preferably with the same parameters, eg, the same dose and route of administration), so that a comparative body of evidence can be developed over time.

Where to go from here

Researchers select an intervention to evaluate in a clinical trial because they are interested in exploring whether the intervention is efficacious in preventing or treating a condition of interest. However, by carefully considering the comparison groups that are selected, the results of the trial can contribute to the larger body of evidence on the prevention or treatment of the condition of interest. For instance, in Figure 2, the inclusion of a nonactive intervention group in the trial that did not connect to the network would have allowed that
Figure 1: Network of interventions used in trials evaluating the efficacy of preventive antibiotics for respiratory disease in swine²⁹ where each node represents a unique intervention.
Figure 2: Network of interventions used in trials evaluating the efficacy of preventive antibiotics for respiratory disease in swine29 where each node represents an antibiotic, with different doses or modes of administration combined into a single intervention.
Implications
• Existing efficacious interventions will guide trial purpose and comparison group type.
• Complete description of interventions and baseline management is essential.
• Linking interventions with other published trials builds a body of evidence.

Acknowledgments
The authors were responsible for developing the ideas presented in this commentary. Partial funding support was obtained from the University of Guelph Research Leadership Chair (Sargeant).

Conflict of interest
None reported.

Disclaimer
Drs O’Sullivan and Ramirez, the journal’s executive editor and editorial board member, respectively, were not involved in the editorial review of or decision to publish this article.

Scientific manuscripts published in the Journal of Swine Health and Production are peer reviewed. However, information on medications, feed, and management techniques may be specific to the research or commercial situation presented in the manuscript. It is the responsibility of the reader to use information responsibly and in accordance with the rules and regulations governing research or the practice of veterinary medicine in their country or region.

References

Regardless, at least one intervention arm in a clinical trial should have been evaluated in a previously published report, to allow linking of trials across all intervention options. Systematic reviews, meta-analyses, and network meta-analyses provide useful information on whether there are interventions shown to be superior to a placebo and on the interventions that have been evaluated for researchers designing a clinical trial. Network meta-analysis provide information on all possible interventions evaluated in the literature for a given outcome. However, these review types are still relatively uncommon in swine health; there are two network meta-analyses published on swine respiratory illness that provide intervention maps detailing all of the intervention groups that have been evaluated in the literature for that topic,10,31 a mixed treatment meta-analysis for porcine circovirus type 2 vaccines,32 and a network meta-analysis on antibiotic alternatives.33 Thus, until more network meta-analyses are conducted, it may be necessary for researchers to conduct a scan of the literature to determine what intervention comparisons have been conducted and to select an intervention group in common with at least one other trial. Ultimately, selecting intervention groups with a view to building a body of evidence will benefit the entire industry, will enhance clinical decision-making by practitioners, and will also improve the health and welfare of swine.

* Non-refereed references.